A Combined Kinetic and Computational Study of the Reactions of Transient Germylenes

with Oxiranes and Thiiranes in Solution.

Svetlana S. Kostina and William J. Leigh*

Figure S1. Plots of (a) k_{decay} vs. [Q] and (b) $(\Delta A_{0})_0 / (\Delta A_{res})_Q$ vs. [Q] for GePh₂ in S3 deoxygenated hexanes containing varying concentrations of CHO (\bullet) and PrS (O) at 25 °C; the solid lines are the least squares analysis of the data to eq. 3 (a) or 4 (b). Absorbance-time profiles were recorded at 500 nm and corrected for the underlying contributions due to the formation of Ge₂Ph₄ by scaled subtraction of absorbance-time profiles recorded at 440nm, following the published procedure.

Figure S2. (a) Transient absorption spectra recorded 0.00-0.32 μ s (\circ), 5.76-6.40 μ s (\Box) S4 and 69.60-70.24 μ s (\bullet) after the laser pulse, by laser flash photolysis of a deoxygenated hexanes solution of **2** containing 10 mM CHO. (b) Transient absorption spectra recorded 0.32-0.96 μ s (\circ), 9.12-9.92 μ s (\Box) and 69.92-70.72 μ s (\bullet) after the laser pulse, by laser flash photolysis of a deoxygenated hexanes solution of **2** containing 5.0 mM PrS. The insets show transient decay traces recorded at 280 nm, 350 nm and 440 nm.

Figure S3. (a) Plots of (a) k_{decay} vs. [Et₂S] for GeMe₂ (O) and GePh₂ (\Box) in S5 deoxygenated hexanes at 25 °; the solid lines are the least squares analysis of the data to eq. 3. (b) Transient absorption spectra recorded 0.32-0.64 µs (\circ), 4.48-5.12 µs (\Box), and 101.4-103.0 µs (Δ) after the laser pulse, by laser photolysis of **1a** in deoxygenated hexanes containing 5 mM Et₂S; (c) Transient absorption spectra recorded 0.16-0.48 µs (\circ), 9.12-9.76 µs (\Box), and 69.9-70.7 µs (Δ) after the laser pulse, by laser photolysis of **2** in deoxygenated hexanes containing 4.5 mM Et₂S. The insets in (b) and (c) show transient absorbance-time profiles recorded at selected wavelengths throughout the range studied.

Figure S4. 500 MHz ¹H NMR spectra of a deoxygenated C_6D_{12} solution containing **1b** S6 (0.040 M), CHO (0.180 M) and Si₂Me₆ (0.01 M), (a) after 15 min photolysis and b) before photolysis with 254 nm light.

Figure S5. Concentration vs. time plots for 254 nm irradiation of a deoxygenated S7 solution of **1b** (0.040 M) in C₆D₁₂ containing CHO (0.180 M) and Si₂Me₆ (0.01 M). The solid lines are the least squares fits of the data, the slopes of which are (in mM min⁻¹) CHO (O), -0.293 \pm 0.021; **3** (\Box), 0. 331 \pm 0. 003. The concentration of **1b** could not be quantified accurately because of spectral interferences.

Figure S6. 500 MHz ¹H NMR spectra of a deoxygenated C_6D_{12} solution containing **1a** S7 (0.040 M), PrS (0.165 M) and Si₂Me₆ (0.01 M), (a) after 15 min photolysis and b) before photolysis with 254 nm light. * - unreactive impurity

Figure S7. Concentration vs. time plots for 254 nm irradiation of a deoxygenated S8 solution of **1b** (0.045 M) in C_6D_{12} containing PrS (0.165 M) and Si_2Me_6 (0.01 M). The solid lines are the least squares fits of the data, the slopes of which are (in mM min⁻¹)

PrS (\bullet), -0.63 ± 0.09; 3 (\Box), 0.340 ± 0.005; propene (4, \bigcirc), 0.103 ± 0.003. The concentration of **1b** could not be determined accurately because of spectral interferences.

Figure S8. 600 MHz¹H NMR spectra of a deoxygenated solution of 1a (0.047 M) in **S**8 C_6D_{12} containing PrS (0.07 M) and Si_2Me_6 (0.012 M), a) after 15 min of photolysis and b) before photolysis.

Figure S9. Concentration vs. time plots for 254 nm irradiation of a deoxygenated **S9** solution of 1a (0.047 M) in C_6D_{12} containing PrS (0.07 M) and Si_2Me_6 (0.012 M). The solid lines are the least squares fits of the data, the slopes of which are (in mM min⁻¹) PrS (\bullet), -0.42 ± 0.39; **1a** (\blacksquare), -0.58 ± 0.09; **5** (\square), 0.39 ± 0.01; propene (**4**, O), 0.108 ± 0.012.

Figure S10. -0.2 - 1.2 ppm region of the 600MHz ¹H NMR spectra of the solution of **S9** Fig. S8, (a) before photolysis, (b) after 15 min photolysis, and (c) after 15 min photolysis and spiked with $(Me_2GeS)_3$ (6). * - unreactive impurity.

Figure S11. Mass spectra of the product mixture of Fig. S8, elution times from the GC S11 are indicated above each spectrum.

Figure S12. 500 MHz ¹H NMR spectra of a deoxygenated C_6D_{12} solution containing 2 S12 (0.065 M), CHO (0.085 M) and Si₂Me₆ (0.005 M), (a) after 35 min photolysis and b) before photolysis with 254 nm light. * - impurity

Figure S13. Concentration vs. time plots for 254 nm irradiation of a deoxygenated S12 solution of 2 (0.065 M) in C_6D_{12} containing CHO (0.085 M) and Si_2Me_6 (0.005 M). The solid lines are the least squares fits of the initial 5 points, the slopes of which are 2 (•), 0.61 ± 0.07 , DMB (o), 0.34 ± 0.03 mM min⁻¹. The concentration of 2 could not be determined accurately because of spectral interferences.

Figure S14. 500 MHz ¹H NMR spectra of a deoxygenated C_6D_{12} solution containing 2 S13 (0.058 M), PrS (0.08 M) and Si₂Me₆ (0.005 M), (a) after 36 min photolysis and b) before photolysis with 254 nm light. * - impurity

Figure S15. Concentration vs. time plots for 254 nm irradiation of a deoxygenated S13 solution of 2 (0.058 M) in C_6D_{12} containing PrS (0.08 M) and Si_2Me_6 (0.005 M). The solid lines are the least squares fits of the initial 4 points, the slopes of which are PrS (**a**), -0.6 ± 0.2 ; **2** (o), 0.47 ± 0.06 , DMB (**a**), 0.39 ± 0.01 , propene (**•**), 0.15 ± 0.01 mM min⁻¹. The concentration of **2** could not be determined accurately because of spectral interferences.

Computational Studies	S14
Dimethylgermylene RB3LYP/6-311+G(d,p) output	S14
Oxirane RB3LYP/6-311+G(d,p) output	S14
Thiirane RB3LYP/6-311+G(d,p) output	S15
Dimethylgermylene-oxirane anti complex B3LYP/6-311+G(d,p) output	S15
Dimethylgermylene-oxirane transition state UB3LYP/6-311+G(d,p) output	S16

S14

Dimethylgermylene-oxirane biradical UB3LYP/6-311+G(d,p) output	S16
Dimethylgermanone B3LYP/6-311+G(d,p) output	S17
1,1-Dimethyl-germa-2-oxetane B3LYP/6-311+G(d,p) output	S17
Ethylene B3LYP/6-311+G(d,p) output	S18
Dimethylgermylene-thiirane anti complex B3LYP/6-311+G(d,p) output	S18
Dimethylgermylene-thiirane transition state UB3LYP/6-311+G(d,p) output	S19
Dimethylgermanethione B3LYP/6-311+G(d,p) output	S19

Figure S1. Plots of (a) k_{decay} vs. [Q] and (b) $(\Delta A_{0})_0 / (\Delta A_{res})_Q$ vs. [Q] for GePh₂ in deoxygenated hexanes containing varying concentrations of CHO (\bullet) and PrS (O) at 25 °C; the solid lines are the least squares analysis of the data to eq. 3 (a) or 4 (b). Absorbance-time profiles were recorded at 500 nm and corrected for the underlying contributions due to the formation of Ge₂Ph₄ by scaled subtraction of absorbance-time profiles recorded at 440nm, following the published procedure.

Figure S2. (a) Transient absorption spectra recorded 0.00-0.32 μ s (\circ) and 5.76-6.40 μ s (\Box) after the laser pulse, by laser photolysis of **2** in deoxygenated hexanes containing 0.01 M CHO; (b) Transient absorption spectra recorded 0.16-0.22 μ s (\circ) and 6.88-7.01 μ s (\Box) after the laser pulse, by laser photolysis of **2** in deoxygenated hexanes containing 0.005 M PrS. The insets show transient decay traces recorded at 280 nm, 350 nm and 440 nm.

Figure S3. (a) Plots of (a) k_{decay} vs. [Et₂S] for GeMe₂ (O) and GePh₂ (\Box) in deoxygenated hexanes at 25 °; the solid lines are the least squares analysis of the data to eq. 3. (b) Transient absorption spectra recorded 0.32-0.64 µs (\circ), 4.48-5.12 µs (\Box), and 101.4-103.0 µs (Δ) after the laser pulse, by laser photolysis of **1a** in deoxygenated hexanes containing 5 mM Et₂S; (c) Transient absorption spectra recorded 0.16-0.48 µs (\circ), 9.12-9.76 µs (\Box), and 69.9-70.7 µs (Δ) after the laser pulse, by laser photolysis of **2** in deoxygenated hexanes containing 4.5 mM Et₂S. The insets in (b) and (c) show transient absorbance-time profiles recorded at selected wavelengths throughout the range studied.

M), CHO (0.180 M) and Si_2Me_6 (0.01 M), (a) after 15 min photolysis and b) before photolysis with 254 nm light.

Figure S5. Concentration vs. time plots for 254 nm irradiation of a deoxygenated solution of **1b** (0.040 M) in C₆D₁₂ containing CHO (0.180 M) and Si₂Me₆ (0.01 M). The solid lines are the least squares fits of the data, the slopes of which are (in mM min⁻¹) CHO (\bigcirc), -0.293 ± 0.021; **3** (\square), 0. 331 ± 0. 003. The concentration of **1b** could not be quantified accurately because of spectral interferences.

Figure S6. 500 MHz ¹H NMR spectra of a deoxygenated C_6D_{12} solution containing **1b** (0.045 M), PrS (0.165 M) and Si₂Me₆ (0.01 M), (a) after 15 min photolysis and b) before photolysis with 254 nm light. * - unreactive impurity

Figure S7. Concentration vs. time plots for 254 nm irradiation of a deoxygenated solution of **1b** (0.045 M) in C₆D₁₂ containing PrS (0.165 M) and Si₂Me₆ (0.01 M). The solid lines are the least squares fits of the data, the slopes of which are (in mM min⁻¹) PrS (\bullet), -0.63 ± 0.09; **3** (\Box), 0.340 ± 0.005; propene (**4**, \bigcirc), 0.103 ± 0.003. The concentration of **1b** could not be determined accurately because of spectral interferences.

Figure S8. 600 MHz ¹H NMR spectra of a deoxygenated solution of **1a** (0.047 M) in C_6D_{12} containing PrS (0.07 M) and Si₂Me₆ (0.012 M), a) after 15 min of photolysis and b) before photolysis.

Figure S9. Concentration vs. time plots for 254 nm irradiation of a deoxygenated solution of **1a** (0.047 M) in C₆D₁₂ containing PrS (0.07 M) and Si₂Me₆ (0.012 M). The solid lines are the least squares fits of the data, the slopes of which are (in mM min⁻¹) PrS (\bullet), -0.42 ± 0.39; **1a** (\bullet), -0.58 ± 0.09; **5** (\Box), 0.39 ± 0.01; propene (**4**, O), 0.108 ± 0.012.

Figure S10. -0.2 - 1.2 ppm region of the 600MHz ¹H NMR spectra of the solution of Fig. S8, (a) before photolysis, (b) after 15 min photolysis, and (c) after 15 min photolysis and spiked with (Me₂GeS)₃ (6). * - unreactive impurity.

Figure S11. Mass spectra of the product mixture of Fig. S8, elution times from the GC are indicated above each spectrum.

Figure S12. 500 MHz ¹H NMR spectra of a deoxygenated C_6D_{12} solution containing **2** (0.065 M), CHO (0.085 M) and Si₂Me₆ (0.005 M), (a) after 35 min photolysis and b) before photolysis with 254 nm light. * - impurity

Figure S13. Concentration vs. time plots for 254 nm irradiation of a deoxygenated solution of 2 (0.065 M) in C_6D_{12} containing CHO (0.085 M) and Si₂Me₆ (0.005 M). The solid lines are the least squares fits of the initial 5 points, the slopes of which are 2 (•), 0.61 ± 0.07, DMB (o), 0.34 ± 0.03 mM min⁻¹. The concentration of 2 could not be determined accurately because of spectral interferences.

Figure S14. 500 MHz ¹H NMR spectra of a deoxygenated C_6D_{12} solution containing **2** (0.058 M), PrS (0.08 M) and Si₂Me₆ (0.005 M), (a) after 36 min photolysis and b) before photolysis with 254 nm light. * - impurity

Figure S15. Concentration vs. time plots for 254 nm irradiation of a deoxygenated solution of **2** (0.058 M) in C₆D₁₂ containing PrS (0.08 M) and Si₂Me₆ (0.005 M). The solid lines are the least squares fits of the initial 4 points, the slopes of which are PrS (**•**), -0.6 \pm 0.2; **2** (o), 0.47 \pm 0.06, DMB (\Box), 0.39 \pm 0.01, propene (**4**, **•**), 0.15 \pm 0.01 mM min⁻¹. The concentration of **2** could not be determined accurately because of spectral interferences.

Calculated structures and energies

Dimethylgermylene B3LYP/6-311+G(d,p) output

Zero-point correction=	0.069978 (Hartree/Particle)
Thermal correction to Energy=	0.075885
Thermal correction to Enthalpy=	0.076829
Thermal correction to Gibbs Free E	nergy= 0.040332
Sum of electronic and zero-point Er	nergies= -2156.764460
Sum of electronic and thermal Ener	gies= -2156.758553
Sum of electronic and thermal Enth	alpies= -2156.757608
Sum of electronic and thermal Free	Energies= -2156.794105

Ge	-0.00000400	-0.51867200	0.00000000
С	-1.49619700	0.83219900	-0.00727700
Н	-1.30130000	1.65872900	-0.69849800
Н	-2.46474500	0.38347200	-0.23495000
Н	-1.55005600	1.26340900	1.00217900
С	1.49622100	0.83217800	0.00727900
Н	1.30143200	1.65864600	0.69861700
Н	2.46480600	0.38344300	0.23476100
Н	1.54984200	1.26354300	-1.00212100

Oxirane B3LYP/6-311+G(d,p) output

Zero-point correction=	0.057135 (Hartree/Particle)
Thermal correction to Energy=	0.060296
Thermal correction to Enthalpy=	0.061240
Thermal correction to Gibbs Free	Energy= 0.033047
Sum of electronic and zero-point	Energies= -153.778906
Sum of electronic and thermal End	ergies= -153.775745
Sum of electronic and thermal Ent	thalpies= -153.774801
Sum of electronic and thermal Fre	e Energies= -153.802993
	-
C 0.72222200 0.2724	3200 0.00001000

C	-0.73333300	-0.37353200	0.00001000
С	0.73375600	-0.37311300	0.00001500
0	-0.00042400	0.85531300	-0.00002800
Н	-1.27036200	-0.59118300	-0.91954300
Н	-1.27036800	-0.59112200	0.91957400
Н	1.27079500	-0.59019600	-0.91964800
Н	1.27078800	-0.59013500	0.91969500

Thiirane B3LYP/6-311+G(d,p) output

Zero-point correction=	0.054814 (Hartree/Particle)
Thermal correction to Energy	0.058198
Thermal correction to Enthal	py= 0.059142
Thermal correction to Gibbs	Free Energy= 0.029521
Sum of electronic and zero-p	oint Energies= -476.778846
Sum of electronic and therma	al Energies= -476.775462
Sum of electronic and therma	al Enthalpies= -476.774518
Sum of electronic and therma	al Free Energies= -476.804139
С 0.73986000 -0.	.80636400 0.00000000
С -0.73984200 -0	.80629100 0.00000000
Н 1.25429400 -1	.07931400 0.91415300
Н 1.25429400 -1	.07931400 -0.91415300
Н -1.25434800 -1	.07931600 0.91410300

	1.20101000	1.07951000	0.91110200
Η	-1.25434800	-1.07931600	-0.91410300
S	0.00000000	0.87457400	0.00000000

Dimethylgermylene-oxirane anti complex B3LYP/6-311+G(d,p) output

Zero-point	correction=	C	.12966	0 (Hartree/Particle)
Thermal co	prrection to Ene	ergy=	0.13	9871
Thermal co	prrection to Ent	halpy=	0.14	0815
Thermal co	prrection to Gib	bs Free Energy	y=	0.092578
Sum of ele	ctronic and zero	o-point Energie	es=	-2310.555637
Sum of ele	ctronic and the	rmal Energies=	=	-2310.545426
Sum of ele	ctronic and the	rmal Enthalpie	s=	-2310.544482
Sum of ele	ctronic and the	rmal Free Ener	gies=	-2310.592718
			-	
С	-1.38091900	-1.51398900	0.654	92400
С	-1.38034600	1.51443900	0.6544	47000
Н	-0.97703300	-2.47980600	0.340	60700
Η	-1.14299200	-1.34577900	1.709	04000
Η	-2.47295600	-1.56735900	0.560	67300
Η	-0.97672900	2.48013500	0.3394	43300
Η	-2.47244100	1.56765300	0.560	70900
Н	-1.14195600	1.34687100	1.708	58600
С	2.40305400	0.73244000	-0.0205	50300
С	2.40308500	-0.73248100	-0.0210	04000
0	1.30383300	-0.00026300	0.572	70800
Н	3.00172700	1.27604300	0.7017	73600
Η	2.14118800	1.25830200	-0.9332	26500
Н	3.00177200	-1.27657800	0.7008	81400
Н	2.14118300	-1.25765600	-0.934	18800
Ge	-0.74380200	-0.00006800	-0.529	946600

Zero-point	correction=		0.1273	39 (Hartree/Partic	le)
Thermal con	rrection to Ene	ergy=	0.13	57144	
Thermal con	rrection to Ent	halpy=	0.1.	38088	
Thermal con	rrection to Gib	bs Free Energy	y=	0.091758	
Sum of elec	tronic and zero	o-point Energie	es=	-2310.531368	
Sum of elec	tronic and the	mal Energies=	=	-2310.521563	
Sum of elec	tronic and the	rmal Enthalpie	s=	-2310.520619	
Sum of elec	tronic and the	rmal Free Ener	gies=	-2310.566949	
			-		
С	-1.59318300	-1.37195500	-0.682	22300	
Н	-1.50277900	-2.35057900	-0.207	75100	
Н	-1.09230900	-1.39621400	-1.655	549300	
Н	-2.65502200	-1.16142300	-0.842	274600	
С	-0.81094900	1.63270500	-0.798	10000	
Н	-0.26564700	2.49414300	-0.406	55200	
Н	-1.85058800	1.93816700	-0.952	253700	
Н	-0.39482000	1.34851400	-1.770	90700	
0	1.08261700	-0.52556200	0.366	76600	
С	2.23489500	0.31638700	0.428	76300	
С	2.55167400	-0.37166300	-0.818	32700	
Н	2.00595000	1.38090700	0.359	31100	
Н	2.85745900	0.09347600	1.295	36100	
Н	2.17388600	0.00824900	-1.756	36100	
Н	3.06224000	-1.32327400	-0.802	252700	
Ge	-0.79043500	0.06061500	0.469	954400	

Dimethylgermylene-oxirane transition state UB3LYP/6-311+G(d,p) output

Dimethylgermylene-oxirane biradical UB3LYP/6-311+G(d,p) output

0.127038 (Hartree/Particle)
0.137740
0.138684
ergy= 0.089667
rgies= -2310.549134
es= -2310.538432
pies= -2310.537488
nergies= -2310.586506
0 0.38979700
00 -0.10265400

Н	-0.00339900	2.48164200	-0.10265400
Η	0.52567200	1.80640800	1.46044800
Η	1.72714000	2.31364900	0.24645300
С	1.92672100	-1.17962600	0.71016200
Н	1.85712900	-2.20258300	0.33989000
Н	2.96403300	-0.84440300	0.65076700

Н	1.59454500	-1.15274700	1.75174200
0	-0.88759500	-0.73748600	-0.10109600
С	-2.11913700	-0.10703800	-0.49375600
С	-3.01009400	-0.04045900	0.69118400
Н	-2.56791400	-0.70369300	-1.29402300
Н	-1.92768800	0.89799700	-0.89883600
Н	-3.80775200	-0.75798400	0.83740500
Н	-2.74760500	0.60582400	1.52065800
Ge	0.75732100	0.00819800	-0.35898100

Dimethylgermanone B3LYP/6-311+G(d,p) output

Zero-point correction=	0.074829 (Hartree/Particle)
Thermal correction to Energy=	0.081814
Thermal correction to Enthalpy=	0.082758
Thermal correction to Gibbs Free Energy	gy= 0.042939
Sum of electronic and zero-point Energy	ies= -2232.022395
Sum of electronic and thermal Energies	-2232.015411
Sum of electronic and thermal Enthalpi	es= -2232.014466
Sum of electronic and thermal Free Ene	ergies= -2232.054285

C -1.64900100 -0.94230800 0.00005700 H -1.67688100 -1.58216500 0.88551800 H -2.50970900 -0.27489500 -0.00047800 H -1.67643600 -1.58307700 -0.88475500 C 1.64900100 -0.94230800 0.00005600 H 1.67688500 -1.58216000 0.88552000 H 1.67643300 -1.58308100 -0.88475200 H 2.50970900 -0.27489400 -0.00048600 Ge 0.00000000 0.12386400 -0.00002100	0	0.00000000	1.77804100	-0.00007000
H-1.67688100-1.582165000.88551800H-2.50970900-0.27489500-0.00047800H-1.67643600-1.58307700-0.88475500C1.64900100-0.942308000.00005600H1.67688500-1.582160000.88552000H1.67643300-1.58308100-0.88475200H2.50970900-0.27489400-0.00048600Ge0.000000000.12386400-0.00002100	С	-1.64900100	-0.94230800	0.00005700
H -2.50970900 -0.27489500 -0.00047800 H -1.67643600 -1.58307700 -0.88475500 C 1.64900100 -0.94230800 0.000056000 H 1.67688500 -1.58216000 0.88552000 H 1.67643300 -1.58308100 -0.88475200 H 2.50970900 -0.27489400 -0.00048600 Ge 0.00000000 0.12386400 -0.00002100	Н	-1.67688100	-1.58216500	0.88551800
H -1.67643600 -1.58307700 -0.88475500 C 1.64900100 -0.94230800 0.00005600 H 1.67688500 -1.58216000 0.88552000 H 1.67643300 -1.58308100 -0.88475200 H 2.50970900 -0.27489400 -0.00048600 Ge 0.00000000 0.12386400 -0.00002100	Н	-2.50970900	-0.27489500	-0.00047800
C 1.64900100 -0.94230800 0.00005600 H 1.67688500 -1.58216000 0.88552000 H 1.67643300 -1.58308100 -0.88475200 H 2.50970900 -0.27489400 -0.00048600 Ge 0.00000000 0.12386400 -0.00002100	Н	-1.67643600	-1.58307700	-0.88475500
H1.67688500-1.582160000.88552000H1.67643300-1.58308100-0.88475200H2.50970900-0.27489400-0.00048600Ge0.000000000.12386400-0.00002100	С	1.64900100	-0.94230800	0.00005600
H1.67643300-1.58308100-0.88475200H2.50970900-0.27489400-0.00048600Ge0.000000000.12386400-0.00002100	Н	1.67688500	-1.58216000	0.88552000
H 2.50970900 -0.27489400 -0.00048600 Ge 0.0000000 0.12386400 -0.00002100	Н	1.67643300	-1.58308100	-0.88475200
Ge 0.00000000 0.12386400 -0.00002100	Н	2.50970900	-0.27489400	-0.00048600
	Ge	0.00000000	0.12386400	-0.00002100

1,1-Dimethylgerma-2-oxetane B3LYP/6-311+G(d,p) output

Zero-point correction=	0.131248 (Hartree/Particle)
Thermal correction to Energy=	0.140339
Thermal correction to Enthalpy=	0.141283
Thermal correction to Gibbs Free	Energy= 0.096933
Sum of electronic and zero-point	Energies= -2310.627846
Sum of electronic and thermal En	ergies= -2310.618754
Sum of electronic and thermal En	thalpies= -2310.617810
Sum of electronic and thermal Fre	ee Energies= -2310.662161
C 1 40005000 1 (04)	12200 0.02511000

С	1.42205800	-1.62443200	-0.02544900
Н	0.78901100	-2.51207100	0.00963400
Н	1.98918500	-1.63489400	-0.95932300

Н	2.12845400	-1.65647700	0.80804900
С	1.42127600	1.62494000	-0.02662200
Н	0.78726000	2.51212700	0.00189600
Н	2.12314800	1.66073300	0.81055900
Н	1.99343100	1.63246400	-0.95743600
0	-1.02006900	-0.00121300	-1.20613100
С	-2.08802200	-0.00019400	-0.22539900
С	-1.34569700	0.00064700	1.13779800
Н	-2.71594700	-0.88737700	-0.36225500
Н	-2.71549400	0.88711200	-0.36354700
Н	-1.51467500	-0.88813300	1.74651100
Н	-1.51466700	0.89013300	1.74548100
Ge	0.32353600	0.00001000	0.06273500

Ethylene B3LYP/6-311+G(d,p) output

Zero-point correction=	0.050784 (Hartree/Particle)
Thermal correction to Energy=	0.053826
Thermal correction to Enthalpy=	0.054770
Thermal correction to Gibbs Free Ener	gy= 0.028605
Sum of electronic and zero-point Energy	gies= -78.564729
Sum of electronic and thermal Energie	s= -78.561686
Sum of electronic and thermal Enthalp	ies= -78.560742
Sum of electronic and thermal Free En	ergies= -78.586908

	0.00000000	-0.66441900	0.00000000
	0.00000000	0.66441900	0.00000000
-	0.92273800	-1.23519800	0.00000000
	-0.92273800	-1.23519800	0.00000000
	-0.92273800	1.23519800	0.00000000
-	0.92273800	1.23519800	0.00000000
	-0.92273800 -0.92273800 -0.92273800 0.92273800	-1.23519800 -1.23519800 1.23519800 1.23519800	0.0000000 0.0000000 0.0000000 0.0000000

Dimethylgermylene-thiirane anti complex B3LYP/6-311+G(d,p) output

Zero-point correction=	0.127485 (Hartree/Particle)
Thermal correction to Energy=	0.137812
Thermal correction to Enthalpy=	0.138756
Thermal correction to Gibbs Free Ener	gy= 0.090475
Sum of electronic and zero-point Energy	gies= -2633.558632
Sum of electronic and thermal Energie	s= -2633.548305
Sum of electronic and thermal Enthalp	ies= -2633.547361
Sum of electronic and thermal Free En	ergies= -2633.595642

С	1.71079900	1.52535000	0.53363800
С	1.71082200	-1.52533800	0.53363600
Н	1.22262100	2.47912200	0.31687300

1.70506300	1.35394900	1.61375100
2.75725200	1.61425100	0.21718400
1.22265900	-2.47911700	0.31687000
2.75727700	-1.61422200	0.21718200
1.70508400	-1.35393700	1.61375000
-2.45802800	-0.73683100	-0.38477200
-2.45802400	0.73683900	-0.38475500
-3.29764900	-1.26124500	0.05447200
-1.94139300	-1.24543800	-1.19061800
-3.29764200	1.26124800	0.05450100
-1.94138700	1.24546200	-1.19059000
-1.31212000	-0.00001300	0.86080200
0.90839500	0.00000000	-0.54945900
	1.70506300 2.75725200 1.22265900 2.75727700 1.70508400 -2.45802800 -2.45802400 -3.29764900 -1.94139300 -3.29764200 -1.94138700 -1.31212000 0.90839500	1.705063001.353949002.757252001.614251001.22265900-2.479117002.75727700-1.614222001.70508400-1.35393700-2.45802800-0.73683100-2.458024000.73683900-3.29764900-1.26124500-1.94139300-1.24543800-3.297642001.26124800-1.941387001.24546200-1.31212000-0.000013000.908395000.00000000

Dimethylgermylene-thiirane transition state RB3LYP/6-311+G(d,p) output

Zero-point correction=	0.125536 (Hartree/Particle)
Thermal correction to Energy=	0.136012
Thermal correction to Enthalpy=	0.136956
Thermal correction to Gibbs Free Energy	gy= 0.087871
Sum of electronic and zero-point Energ	gies= -2633.541799
Sum of electronic and thermal Energies	-2633.531323
Sum of electronic and thermal Enthalpi	es= -2633.530379
Sum of electronic and thermal Free Ene	ergies= -2633.579464

1.40404400	1.63606700	0.72322000
1.57766300	-1.50258100	0.86147500
0.98951500	2.52105200	0.23736900
0.97044000	1.53064800	1.72210100
2.48262500	1.78024200	0.83658600
1.24133500	-2.46253700	0.46652600
2.66645800	-1.53328700	0.96386800
1.14481500	-1.34525200	1.85342000
-2.60243000	0.75160500	0.48575000
-2.79359500	-0.62263500	0.66702300
-3.25559700	1.31443300	-0.16812600
-2.04822100	1.32834400	1.21470200
-3.53031600	-1.16479400	0.09009100
-2.31468800	-1.15033900	1.48000200
-1.17007200	-0.13439200	-0.78324000
1.08939700	-0.00759300	-0.39342200
	1.40404400 1.57766300 0.98951500 0.97044000 2.48262500 1.24133500 2.66645800 1.14481500 -2.60243000 -2.79359500 -3.25559700 -2.04822100 -3.53031600 -2.31468800 -1.17007200 1.08939700	1.404044001.636067001.57766300-1.502581000.989515002.521052000.970440001.530648002.482625001.780242001.24133500-2.462537002.66645800-1.533287001.14481500-1.34525200-2.602430000.75160500-2.79359500-0.62263500-3.255597001.31443300-2.048221001.32834400-3.53031600-1.16479400-2.31468800-1.15033900-1.17007200-0.134392001.08939700-0.00759300

Dimethylgermanethione B3LYP/6-311+G(d,p) output

Zero-point correction=	0.073744 (Hartree/Particle)
Thermal correction to Energy=	0.080993
Thermal correction to Enthalpy=	0.081937
Thermal correction to Gibbs Free Energy	gy= 0.040906

Sum of electronic and zero-point Energies=-2555.034269Sum of electronic and thermal Energies=-2555.027020Sum of electronic and thermal Enthalpies=-2555.026076Sum of electronic and thermal Free Energies=-2555.067108

С	-1.27968800	1.62705700	0.00009700
Н	-1.92049800	1.63789900	0.88564500
Н	-0.63818100	2.50698500	-0.00038600
Н	-1.92133500	1.63749400	-0.88484700
С	-1.27968800	-1.62705700	0.00009600
Н	-1.92049400	-1.63790200	0.88564700
Н	-1.92133900	-1.63749000	-0.88484500
Н	-0.63818100	-2.50698500	-0.00039300
Ge	-0.17791600	0.00000000	-0.00000400
S	1.87560000	0.00000000	-0.00011600