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Karl Barry Sharpless
• Born in Philadephia in 1941
• Ph.D from Stanford 

University in 1968
• Postdoc at Harvard and at 

Stanford
• Research on chiral synthesis 

and catalysts at the Scripps 
Institute

• Received Nobel Prize in 2001 
for his work on 
stereoselective oxidation 
reactions
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Sharpless Asymmetric Epoxidation 
(SAE)

- Converts primary and secondary allylic alcohols 
into 2,3 epoxyalcohols

-The reaction is enantioselective (only one 
enantiomer produced)

-Enantiomer formed depends on stereochemistry of 
catalyst



The Reaction

• The catalyst is titanium tetra(isopropoxide) with 
diethyltartrate.

• The use of + or – tartrate will yield different enantiomers
• Tertbutylperoxide is used as the oxidizing agent
• Dichloromethane solvent and -20ºC temperature
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The Catalyst

• Via rapid ligand exchange of OiPr and diethyl tartrate
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The Mechanism

CO2Et

EtO2C

EtO

OiPr

O

O

OiPr

O

iPrO
OiPr

O

O

O

Ti Ti
OEt

+
OH

O

CH3

CH3

CH3 +

OH

CH2

CH2

H
OEt

O

EtOOC
O

O

O

O

O

Ti

tBu

+

EtOOC

EtOOC

O

O

OiPr

OiPr

OiPr

OiPr

Ti



Transition State
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Products
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Improvements
• Many potential areas of improvement to the 

original reaction
• Possible problems:

– Stoichiometric amount of catalyst required
– Water soluble substrates (Polymer Support) 

cannot be isolated after reaction
– Requirement for low temperatures (high cost 

for SAE)
– Some substrates react very slowly
– Heterogeneous reaction?



Molecular Sieves
• Original reaction requires stoichiometric amount of 

Ti(iOPr)4 catalyst
• Very reactive allyl alcohols need 50% catalysts – still 

significant
• Major reasons for failure of SAE reactions:

– Water destroys catalyst
– Water ring-opens epoxide

• 3Å molecular sieves absorb water improving yield
• Requirement of Ti catalyst reduced to <10% and the 

tartrate ester to <13%
• Allyl alcohol concentration can be kept high since side 

reactions are minimized (no ring opening)



Molecular Sieves
• Advantages:

– Economy – less catalyst required
– Somewhat milder conditions
– Ease of isolation
– Increased yields
– Possible in-situ derivatization

• Problem: the substrate may not be soluble in 
the solvent (low propoxide ion concentration)



Polymer Support
• Metal catalyst is mounted on a polymer which makes it 

(usually) heterogeneous
• Advantages:

– Lab scale: facilitate workup and isolation
– Industry: continuous process
– Minimizes catalyst loss during workup

• Possible Polymers:
– silica gel (H2O2 catalysts)
– alkaloid polymers
– Polystyrene (heterogeneous Jacobson epoxidation)

• Polymer support vital with water-soluble substrates 



Polymer Support
• Early work with polystyrene had low %ee
• A Scottish group used linear chiral poly(tartrate

esters)
• Combining benefits of polymer support with the 

active functionality built in

• Reaction gives good yields and %ee
• Branched poly(tartrate esters) were found to be 

even more selective and had higher yields



Higher Temperatures SAE
• Problem: High cost due low temperatures
• Solution: Titanocene-tartrate (TT) catalyst
• Very good catalytic activity and decent 

enantioselectivity at higher temperatures
• TT has bulky cyclopentadienyl rings which 

create steric hindrance, inducing chirality 
(compare with BINOL)

• In classic SAE, the tartrate-titanium 
complex forms through ligand exchange



Higher Temperatures SAE
• But the titanocene-tartrate cannot form 

through ligand exchange (Ti-halide 
stable)

• Titanocene tartrate is generated before 
the reaction:



In Situ Modification
• Ideal use for SAE is to make low molecular 

weight chiral products – synthetic utility
• Low molecular weight substrates react slowly –

product is lost during workup
• The epoxide formed may also be ring-opened 

during workup
• With molecular sieves, the catalyst 

concentration is reduced, so solubility of 
product also decreases

• Better solution is in-situ derivatization



In Situ Modification
• Epoxy-alcohol product is converted to an ester 

derivative:
– p-toluene sulfonyl and 2-naphthalene sulfonyl
– t-butyl diphenyl silyl and t-butyl dimethyl silyl

• The derivatives are
– Easily un-doable (good leaving group)
– Functionally equivalent to parent for reactions

• Further chemistry can be done on the epoxy-“alcohol”
without loss of yield

• Derivative may be isolable in high yield and then 
converted back to alcohol



Other Modifications
• Numerous minor modifications 

to the classic SAE
• Ageing the catalyst: the catalyst 

is synthesized fresh and “aged”
for 30 minutes

• Alternative solvents: isooctane, 
toluene

• The ester: diethyl tartrate vs. 
diisopropyl tartrate

• Mesoporous silica support for 
heterogeneous catalysis (MCM-
41) Structure of catalytic center of

MCM‐41



Competing Methods
• Many competing 

reactions for 
generating epoxides:

• Jacobsen-Katsuki
epoxidation

• Prilezhaev reaction
• Shi expoxidation
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Jacobsen-Katsuki Epoxidation
• Uses cis alkene as a reactant 
• Allows broader scope of substrate (R: Ar, 

alkenyl, alkynyl; R': Me, alkyl)
• Mn-salen catalyst and a stoichiometric oxidant
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Jacobsen-Katsuki Epoxidation
• Mechanism’s catalytic cycle shows the formation 

of an Mn(V)-oxo complex
• Good yields with high enatomeric excess



Prilezhaev Reaction
• Reaction of an alkene with a peracid

• meta-chloroperoxybenzoic acid (m-CPBA) is 
most commonly used as the peracid

• Magnesium mono-perphthalate and peracetic
acid
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Shi Epoxidation
• Reaction involving a trans alkene
• Oxone is another main component
• Fructose derived catalyst used
• High enatiomeric excess yields
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Uses of the Reaction
• The Sharpless Asymmetric Epoxidation converts 

alkenes into chirally active epoxides
• Innumerable syntheses published that use the SAE
• Chiral epoxides easily converted into:

– 1,2 Diols
– Make carbon-carbon bonds (stereospecifically)
– Aminoalcohols

• Two examples considered:
– A complex synthesis of Venustatriol by EJ Corey
– Simpler synthesis of Untenone by Mizutani et al.



Venustatriol
• Marine-derived natural product discovered initially 

in 1986
• Found in red alga Laurencia venusta
• Derived in vivo from squalene, made as a triterpene
• Shown to have antiviral and anti-inflammatory 

properties
• Structure contains repeated polyether moieties
• Key problems: multiple stereocenters and 

polyether moieties.
• Corey proposed a “simple and straightforward”

disconnection



Venustatriol - Reterosynthetic Analysis

Fragment A

Fragment B



Fragment A



Fragment B



Final Step - Venustatriol



Untenone
• Isolated from a marine sponge in 1993
• Exhibits inhibitory activity against mammalian 

DNA polymerases
• These enzymes are important for DNA 

replication, repair and cell divisions (cancer 
implications)

• Biosynthetic pathway not investigated
• The critical part of the synthesis is the 

introduction of a quaternary carbon center (done 
via SAE)

• The total synthesis is 15 steps



Untenone - Reterosynthetic Analysis
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Untenone Synthesis
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