Crystal Systems & Their Symmetries

Crystal System	Lattice & point symmetries	Metric Constraints NOTE: "≠" means "doesn't have to be" rather than "not equal to"
Triclinic	1 , 1	$a \neq b \neq c; \ \alpha \neq \beta \neq \gamma$
Monoclinic	2/m , 2, m	$a \neq b \neq c; \alpha = \gamma = 90^{\circ}, \beta \neq 90^{\circ}$
Orthorhombic	mmm , mm2, 222	$a \neq b \neq c; \ \alpha = \beta = \gamma = 90^{\circ}$
Tetragonal	4/mmm , 4 2m, 4mm, 422, 4/m, 4 , 4	a = b \neq c; $\alpha = \beta = \gamma = 90^{\circ}$
Trigonal rhombohedral setting hexagonal setting	3 m, 3m, 32, 3 , 3	a = b = c; $\alpha = \beta = \gamma \neq 90^{\circ}$ a = b \neq c; $\alpha = \beta = 90^{\circ}$, $\gamma = 120^{\circ}$
Hexagonal	6/mmm , 60m2, 6mm, 622, 6/m, 6 6	a = b \neq c; α = β =90°, γ = 120°
Cubic	m3 m, 43m, 432, m3, 23	a = b = c; α = β = γ = 90°

Understanding Hermann-Mauguin Notation for Point Groups

Crystal System	1 st Position	2 nd Position	3 rd Position	Point Groups
Triclinic	Only one position	n, denoting all dire	ctions in crystal	1 , 1
Monoclinic	Only 1 symbol: 2	or $\overline{2} \parallel$ to Y (<i>b</i> is pr	rincipal axis)	2/m , 2, m
Orthorhombic	2 and/or 2 ∥ to X	2 and/or 2 ∥ to Y	2 and/or 2 ∥ to Z	mmm , mm2, 222
Tetragonal	4 and/or 4 ∥ to Z	2 and/or 2 ∥ to X and Y	2 and/or 2 ∥ to [110]	4/mmm ,
Trigonal	3 and/or 3 ∥ to Z	2 and/or 2		3m , 3m, 32, 3 , 3
Hexagonal	6 and/or 6 ∥ to Z	2 and/or 2 ∥ to X, Y, U	2 and/or $\overline{2}$ along [1 $\overline{1}0$]	6/mmm , 6m2, 6mm, 622, 6/m, 6, 6
Cubic	2 and/or $\overline{2} \parallel$ to X, Y, Z	$2 \text{ and/ar} \overline{2} \parallel t_0$		m 3 , 23
	4 and/or 4 ∥ to X, Y, Z	[111]	2 and/or $\overline{2}$ along face diagonals	m3̄m , 43m, 432